Action-Graph Games, and an Algorithm for Computing their Equilibria

Navin A. R. Bhat University of Toronto

Kevin Leyton-Brown University of British Columbia

Compact Game Representations

- Extensive form: sequential structure
- Congestion games [Rosenthal, 1973]
 - anonymity: agents' payoffs depend on numbers of other agents choosing same resources, not on individual identities;
 - additivity over resources
- Graphical games [Kearns *et al.*, 2001]
 - strict utility independence holds between some pairs of agents
 - leveraged for rapid computation of equilibria (e.g.) [Blum $et\ al.$, 2003]
- Local-effect games [L-B & Tennenholtz, 2003]
 - context-specific independence
 - also symmetry, anonymity, monotonicity, additivity of local effects

Action-Graph Games

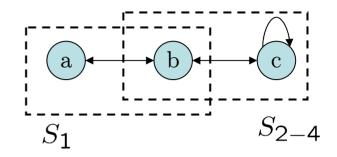
 $AGG = \langle N, \mathbf{S}, S, \nu, u \rangle$ N = set of n agentsS = set of pure action profiles $S_i \equiv$ action set of agent *i* $\mathbf{S} \equiv \prod_{i \in N} S_i$ S = set of distinct action choices $S \equiv \bigcup_{i \in N} S_i$ $\nu =$ **neighbor** relation $\nu: S \mapsto 2^S$

u =**utility** function

 $u:S\times\Delta\mapsto\mathbb{R}$

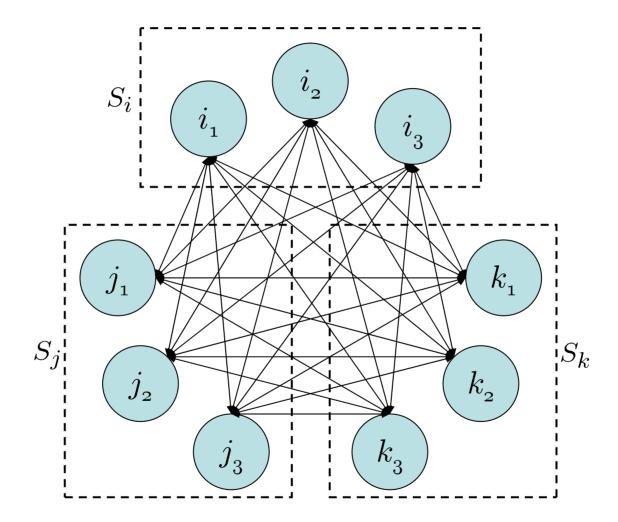
 $\Delta =$ set of distributions of numbers of agents over distinct actions

key property: *u* depends only on numbers of agents who take *neighboring* actions

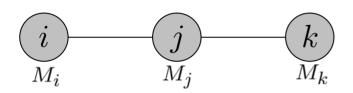


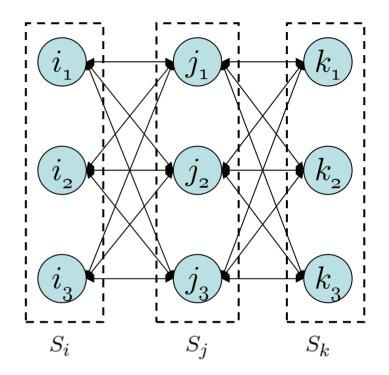
$$N = \{1, 2, 3, 4\}; S = \{a, b, c\}$$
$$S_1 = \{a, b\}; S_{2-4} = \{b, c\}$$
$$\nu(c) = \{b, c\}$$
$$u(c, D) = D(c) - D(b)^2$$
$$e.g., D = (1, 1, 2)$$

AGGs are Fully Expressive



Graphical Games as AGGs



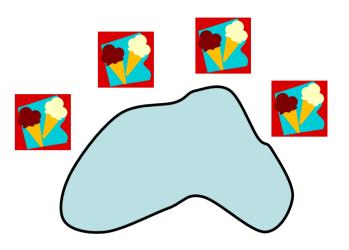


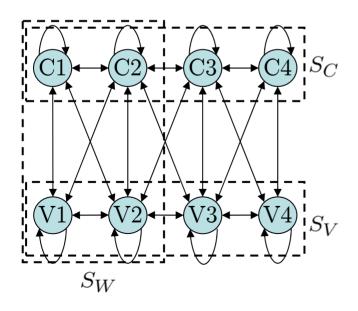
GG	AGG
Agent node	Action set box
Edge	Bipartite graphs between action sets
Local game matrix	Node utility function

Constrained Location Problem

n vendors sell either chocolate or vanilla ice cream at one of four stations along a beach

- n_C chocolate (C) vendors;
- n_V vanilla (V) vendors;
- $n_W \operatorname{can}$ sell C/V, but only on the west side.
- competition between nearby sellers of same type; synergy between nearby different types





Notes:

- representation independent of # agents
- overlapping action sets
- context-specific independence without strict independence

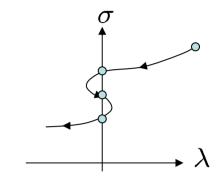
Other examples of compact AGGs:

- Role formation games
- Traffic routing games
- Product placement games
- Party affiliation games

Continuation Method for Equilibria

[Govindan & Wilson, 2003]

- $V_{s_i}^i(\sigma) \equiv$ expected payoff to agent *i* for playing action s_i , if other agents play according to mixed-strategy profile σ
- Deform payoff to obtain a game with known equilibrium:



- add bonus, parameterized by λ : $V_{s_i}^i(\sigma) + \lambda b_{s_i}^i$
- Strategy improvement mapping: $\sigma \mapsto R(\sigma + V(\sigma))$
 - fixed points define equilibria
- Path following:
 - Initial $(\sigma,\,\lambda)$ known
 - Compute local path direction
 - ∇V is bottleneck computation
 - Take small step along path; repeat

Payoff Jacobian

$$\begin{aligned} \frac{\partial V_{s_i}^i(\sigma_{-i})}{\partial \sigma_{i'}(s_{i'})} &\equiv \nabla V_{s_i,s_{i'}}^{i,i'}(\overline{\sigma}) \\ &= \sum_{\overline{\mathbf{s}} \in \overline{\mathbf{S}}} u_i\left(s_i, s_{i'}, \overline{\mathbf{s}}\right) Pr(\overline{\mathbf{s}}|\overline{\sigma}) \\ &\quad (\overline{*} \equiv -\{i, i'\}) \end{aligned}$$

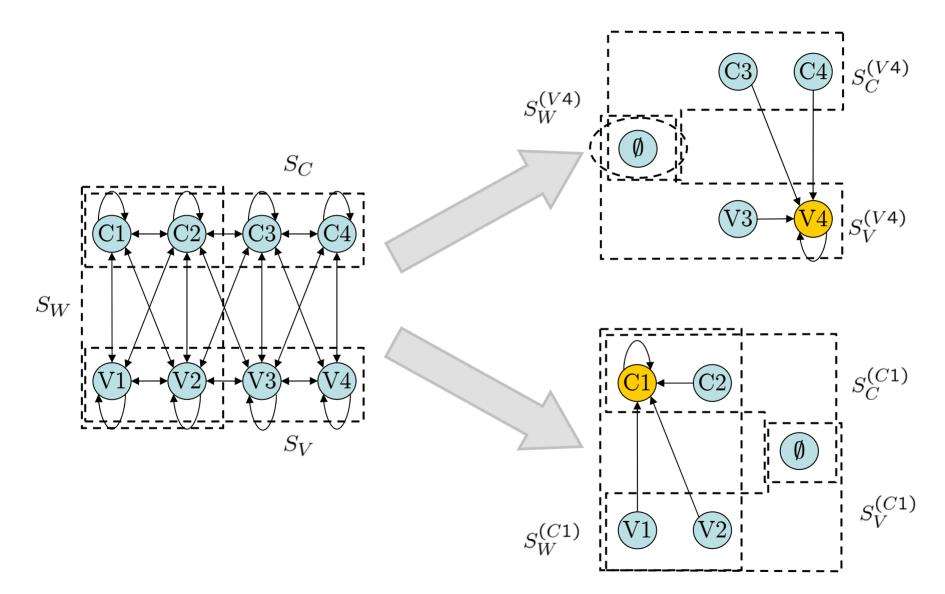
Computational complexity:

• $O\left(poly(\overline{n})poly(|S|)\right)$

Other applications of this Jacobian:

- Iterated Polymatrix Approximation (IPA)
 - a quick start for the continuation method
- Gradient for policy search multiagent RL algorithms

Projection



AGG Jacobian for Arbitrary Equilibria

- Projection captures **context-specific independence** and strict independence
- Writing in terms of the distribution captures anonymity

$$\nabla V_{s_i,s_{i'}}^{i,i'}(\sigma) = \sum_{\overline{D}^{(s_i)}\in\overline{\Delta}^{(s_i)}} u\left(s_i, \mathcal{D}\left(s_i, s_{i'}, \overline{D}^{(s_i)}\right)\right) Pr\left(\overline{D}^{(s_i)}|\overline{\sigma}^{(s_i)}\right);$$

$$Pr\left(\overline{D}^{(s_i)}|\overline{\sigma}^{(s_i)}\right) = \sum_{\overline{\mathbf{s}}^{(s_i)} \in \mathcal{S}\left(\overline{D}^{(s_i)}\right)} Pr\left(\overline{\mathbf{s}}^{(s_i)}|\overline{\sigma}^{(s_i)}\right)$$

 $*^{(s)} \equiv$ projection with respect to action s $\overline{*} \equiv -\{i, i'\}$ $S(D) \equiv$ class of D, i.e. set of pure action profiles corresponding to D

AGG Jacobian for Arbitrary Equilibria

Theorem 1 Computation of the Jacobian for an arbitrary actiongraph game with maximum indegree \mathcal{I} takes time that is $O\left((\mathcal{I}+1)^{\overline{n}}poly(\overline{n})poly(|S|)\right).$

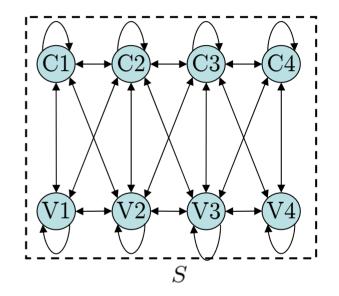
• Exponential speedup vs. GW: $O(|S|^{\overline{n}} poly(\overline{n}) poly(|S|))$

Corollary 1 For a graphical game encoded as an AGG, if f is the maximum family size and α is the maximum number of actions available to each agent, the Jacobian can be computed in time that is $O\left(poly(\alpha^f)poly(\overline{n})poly(|S|)\right)$.

• Same exponential speedup as Blum *et. al.* for computing the Jacobian for a graphical game using an explicit graphical game representation

Symmetric Equilibria

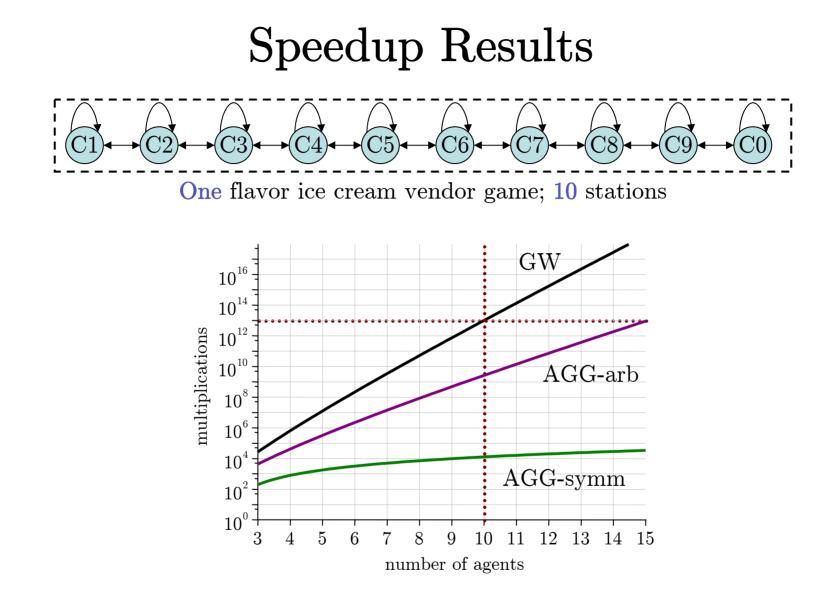
- Symmetric games are important – AGGs are symmetric when $\forall i, S_i = S$
- Nash [1951] proved all symmetric games have symmetric mixedstrategy equilibria: $\forall i, \sigma_i \equiv \sigma^*$
 - Jacobian simplifies because elements are agent-independent
- Continuation method:
 - seed with a symmetric equilibrium of the perturbed game
 - Jacobian is agent-independent
 - path traces to symmetric equilibrium of game of interest



Symmetric AGG Jacobian

- All pure action profiles giving rise to the same distribution of agents are equally likely, so $Pr\left(\overline{D}^{(s_i)}|\overline{\sigma}^{(s_i)}\right)$ is just $Pr\left(\overline{\mathbf{s}}^{(s_i)}|\overline{\sigma}^{(s_i)}\right)$ times the number profiles that achieve $\overline{D}^{(s_i)}$
 - number of profiles: multinomial coefficients on projected graph
- Jacobian: sum over space $\overline{\Delta}^{(s_i)}$
 - space of projected distributions is polynomial-sized (number of combinatorial compositions)

Theorem 2 Computation of the Jacobian for symmetric actiongraph games takes time that is $O\left(poly(\overline{n}^{\mathcal{I}})poly(|S|)\right)$.



Given a 1 GFLOP computer, solve Jacobian for: 10 agents: GW ~1 hr; 1 hr: GW 10 agents;

Conclusions

- AGGs are a fully expressive compact representation for games
- They compactly express:
 - context-specific and/or strict utility independencies
 - anonymity in utility functions
- We leverage the AGG representation to compute Nash equilibria using a continuation method; guarantee
 - arbitrary equilibria: exponential speedup of continuation method
 - symmetric equilibria: bounded indegree implies **polytime** computation of Jacobian

google://"Navin Bhat"

google://"Kevin Leyton-Brown"